求素数的三种方法(Java实现)

2025-06-06 17:32:48
Avatar for adminadmin

文章目录

作业标题一、常规方法(最低效)思路说明:缺点:

二、稍微高效的方法(x/2)思路说明:缺点:

三、高效方法(根号x)思路说明:

作业标题

给定一个数字,判定一个数字是否是素数。 素数又叫质数,质数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。最小的质数是2,它也是唯一的偶数质数,最前面的质数依次排列为:2、3、5、7、11、13、17、19、23、29、31等。 第一种方法是我自己做作业时想到的,但是随着只是不断深入,我们还是要尽可能的将每个解法做到高效。

一、常规方法(最低效)

思路说明:

从而开始,一旦出现能整除的,就表示不是素数,如果从二开始到她本身之前都没有整除的,说明就是素数,这一解法从数组本身的定义出发的。

缺点:

当数字较大时,循环次数太多,所以不建议使用。

public static void main(String[] args){

Scanner sc=new Scanner(System.in);

int a=sc.nextInt();

int i=0;

for(i=2;i

if(a%i==0){

break;

}

}

if(i==a){

System.out.println(a+"是素数");

}else{

System.out.println(a+"不是素数");

}

sc.close();

}

运行结果:

二、稍微高效的方法(x/2)

思路说明:

将循环范围定在2到指定数的二分之一(原理:任何一个数的最大因数都小于等于它的二分之一,所以只要从2查找到x/2,如果都没有被整除就是素数,因为到这里已经查找到他的最大因数了。例如24的最大因数为12,100的最大因数为50.)这样就会减少循环次数。

缺点:

效率提高了不少,但也并不是最优解。 代码如下(示例):

public static void isPrime2(int x){

boolean flag;

int i=0;

int j=0;

flag=true;

for(j=2;j<=x/2;j++){

if(x%j==0){

flag=false;

break;

}

}

if(j>x/2){

System.out.println("是素数");

}else{

System.out.println("不是素数");

}

}

public static void main(String[] args) {

isPrime2(17);

}

三、高效方法(根号x)

思路说明:

其实只要把循环一直从2尝试到根号x就可以,不难发现,一个数的两个因数中,毕然有一个小于等于根号x,一个大于等于根号x,例如100的因数有:1和100,2和50,4和25,5和20,10和10.所以只要从2尝试到根号x,如果都没有被整除,就是素数,否则就不是。和第二种方法类似,但是效率相对更高,推荐使用。

public static void isPrime1(int x){

boolean flag;

int i=0;

int j=0;

flag=true;

for(j=2;j<=Math.sqrt(x);j++){

if(x%j==0){

flag=false;

break;

}

}

if(j>Math.sqrt(x)){

System.out.println("是素数");

}else{

System.out.println("不是素数");

}

}

public static void main(String[] args) {

isPrime1(17);

}

Copyright © 2088 沙滩足球世界杯_足球世界杯中国 - pfw18.com All Rights Reserved.
友情链接